

www.nagios.com Page 1 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Purpose
This document describes how to use the Nagios XI Framework to access data and build a successful
component. Components are developed to extend the functionality of your Nagios XI installation.

Overview
This document will cover the following topics:

• Example Component Code

• General Developer Guidelines

• Setting Up Nagios XI For A Development Environment

• Component Registration and Initialization

• Using The Backend API To Get XML Data

• Adding Nagios XI's Javascript and CSS

Example Component Code
Each of the code examples from this document will be used from the following Nagios XI Mass
Acknowledgment Component, which can be obtained from the link below. Download this
component and review the functions listed throughout this document as each is explained.

http://exchange.nagios.org/directory/Addons/Components/Mass-Acknowledgement-
Component/details

http://exchange.nagios.org/directory/Addons/Components/Mass-Acknowledgement-Component/details
http://exchange.nagios.org/directory/Addons/Components/Mass-Acknowledgement-Component/details

www.nagios.com Page 2 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

General Developer Guidelines
The development guidelines for Nagios XI Components are still somewhat loosely defined, but the
following conditions will maximize compatibility, security, and reliability of the component. Contact
the Nagios XI Support Team if you have questions about your code and see php.net for the best
reference on PHP syntax and built-in functions.

• Components must be free from all fatal, syntax, and notice error messages. This includes
accounting for undefined variables and array indices.

• Components should not run UPDATE or INSERT SQL queries directly into the nagios or
nagiosql databases. This will have unpredictable results and will most likely break a
monitoring configuration. If the component requires that this be done, the component code
should be reviewed by the Nagios XI Development Team if it's going to be published for public
use.

• To maintain security within Nagios XI, avoid interacting directly with the $_POST, $_GET, or

$_GLOBALS arrays. To access variables submitted in forms, use the “grab_request_var()”.
For example:

$form_variable = grab_request_var('indexName', 'default_value');

Would replace the following call:

$form_variable = $_POST['indexName'] or $_GET['indexName'] or
'default_value';

This will use some of the security features built into Nagios XI to clean any input variables and
prevent XSS vulnerabilities.

Setting Up Nagios XI For A Development Environment
Different developers have their own preferences as to how to set up their development environment in
PHP. The following setup will be the simplest way to work with and debug a component while it's in
development.

Open the /etc/php.ini file in your preferred text editor, and change the existing settings to match
the following:

 error_reporting = E_ALL & ~E_WARNING
 display_errors = On
 ignore_repeated_errors = On

php.net

www.nagios.com Page 3 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Run service httpd restart from the command-line to restart Apache and load the new PHP
settings. This will generate error output directly to the browser window but also create enough
filtering so that the error output is easier to decipher.

Component Registration and Initialization
To register a component with Nagios
XI, a special include script is required.
For this and further examples, we will
use code examples from the Mass
Acknowledgement component. The
ID we will give this component is:
massacknowledge, therefore we will
use that same name in several places
throughout this component. Start by
creating a directory called massacknowledge. All the files will be stored inside of this directory. In

the top level of the directory there needs to be a file called massacknowledge.inc.php. This is a
required script that the Nagios XI framework will look for upon component installation, and it will
contain all the component registration information.

Component Initialization Code

The best way to handle component initialization for a new development is to start with an existing
component's registration script and modify it to fit the new component. Make sure all the functions in
the registration script (yourcomponent.inc.php) are prepended with the component's ID.

Examples of the massacknowledge component are list:

 function massacknowledge_component_checkversion(),
 function massacknowledge_component_addmenu($arg=null)
 function massacknowledge_component_init()

Examples of your component (yourcomponent) would be as follows:

 function <yourcomponent>_component_checkversion(),
 function <yourcomponent>_component_addmenu($arg=null)
 function <yourcomponent>_component_init()

www.nagios.com Page 4 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

The <componentname>_component_init() function submits a list of constants to Nagios XI to
register the component. Here is the complete list of possible options to initialize a component.

• COMPONENT_TITLE

• COMPONENT_VERSION

• COMPONENT_AUTHOR

• COMPONENT_DESCRIPTION

• COMPONENT_DATE

• COMPONENT_COPYRIGHT

• COMPONENT_LICENSE

• COMPONENT_HOMEPAGE

• COMPONENT_CONFIGFUNCTION

www.nagios.com Page 5 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Adding A Component To the Menu

Review the function “massacknowledge_component_addmenu()” for the example code. The menu
constants in Nagios XI can be used to identify the top menu items on the blue navigation bar, such as
MENU_HOME, MENU_CONFIGURE, and MENU_ADMIN. The following example finds a location within
the main home menu, and then adds a link into Nagios XI.

 $mi=find_menu_item(MENU_HOME,"menu-home-acknowledgements","id");
 $order=grab_array_var($mi,"order",""); //extract this variable from the $mi array

 $neworder=$order+0.1; // determine my menu order

 // add this to the main home menu
 add_menu_item(MENU_HOME,array(
 "type" => "link",
 "title" => "Mass Acknowledge",
 "id" => "menu-home-massacknowledge",
 "order" => $neworder,
 "opts" => array(
 // this is the page the menu will point to.
 // all my actual component workings will happen on this script
 "href" => $urlbase."/mass_ack.php",
)
));

A list containing most of the default menu items is in the
/usr/local/nagiosxi/html/includes/utils-menu.inc.php script. This script can be viewed
to determine menu IDs for placement of your new menu item.

Using The Backend API To Get XML Data
The Nagios XI framework has a large collection of functions to retrieve XML data from the backend.
Although this document won't be able to cover all methods and options for the data retrieval, it will
cover some of the primary functions and options needed for most components.

www.nagios.com Page 6 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Necessary Functions for All Nagios XI Data

The following functions should be at the top of all web-accessible scripts for any Nagios XI
Component. These will verify the session authentication and connect the script to all databases and
give full access to any of the necessary includes for the Nagios XI framework.

 require_once(dirname(__FILE__).'/../../common.inc.php');
 // initialization stuff
 pre_init();
 // start session
 init_session();
 // grab GET or POST variables
 grab_request_vars();
 // check prereqs
 check_prereqs();
 // check authentication
 check_authentication(false);

Previewing XML structure in Nagios XI:

By accessing the following URL in Nagios XI, commands can be submitted to retrieve XML for
use in components and external applications.

http://<yourserver>/nagiosxi/backend/?cmd=gethoststatus

Below is a list of common backend commands. The complete list of commands available from this
page are in the file /usr/local/nagiosxi/html/backend/index.php:

• gethoststatus

• getservicestatus

• gethosts

• getservices

• getcomments

• getprogramstatus

• getusers

• getparenthosts

• getcontacts

www.nagios.com Page 7 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

• gethostgroups

• gethostgroupmembers

• getservicegrouphostmembers

• getcustomhostvariablestatus

• getstatehistory

• getnotifications

www.nagios.com Page 8 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Internal PHP Functions for Backend Data

Example for retrieving a brief list of host status data:

 $backendargs["cmd"]="gethoststatus";
 $backendargs["brevity"]=1;
 $xml=get_xml_host_status($backendargs);

Common Backend Functions:

 get_xml_program_status($args)
 get_xml_service_status($args)
 get_xml_custom_service_variable_status($args)
 get_xml_host_status($args)
 get_xml_custom_host_variable_status($args)
 get_xml_comments($args)

Common Backend $arg options:

 $backendargs["cmd"]="getservicestatus";
 $backendargs["combinedhost"]=1;
 $backendargs["current_state"]="in:1,2,3";
 $backendargs["has_been_checked"]=1;
 $backendargs["problem_acknowledged"]=0;
 $backendargs["scheduled_downtime_depth"]=0;
 $backendargs['is_active']=1;
 //sort list by last state change
 $backendargs["orderby"]='last_state_change:d';
 //get the XML data
 $xml=get_xml_service_status($backendargs);

www.nagios.com Page 9 of 9

Copyright © 2025 Nagios Enterprises, LLC. All rights reserved.

Trademarks are the property of their respective owner.

How To Write Custom Components For Nagios XI

Adding Nagios XI's Javascript and CSS
If your component doesn't require any special Javascript or CSS specifications, the simple way to
start a web-accessible PHP script for your component is with:

 do_page_start(array("page_title"=>"MyComponent"), true);

This will take care of adding all necessary HTML head information for a standard Nagios XI web
page. If you just wish to access Nagios XI's stylesheets and JS includes, but you want to be able to
specify your own HTML head information (such as additional CSS styles or Javascript functions),
then you can just use:

 do_page_head_links();

And this will include only the head tags for Nagios XI's CSS and Javascript includes.

Finishing Up
This completes the documentation on writing custom components for Nagios XI. If you have
additional questions or other support-related questions, please visit us at our Nagios Support Forum,
Nagios Knowledge Base, or Nagios Library:

Visit Nagios Support Forum Visit Nagios Knowledge Base Visit Nagios Library

https://support.nagios.com/forum/
https://support.nagios.com/kb/
https://library.nagios.com/

