
Nagios

Start Up Guide

Nagios is the industry standard for monitoring network infrastructure. The Nagios
Start Up Guide provides the foundation for installation and initial configuration of

Nagios. In addition, instruction on the monitoring of Linux and Windows machines is
provided.

1

Nagios is a registered trademark of Nagios Enterprises. Linux is a registered trademark of Linus Torvalds. Ubuntu
registered trademarks with Canonical. Windows is a registered trademark of Microsoft Inc. All other brand names
and trademarks are properties of their respective owners.

The information contained in this manual represents our best efforts at accuracy, but we do not assume liability or
responsibility for any errors that may appear in this manual.

Date of Manual Version: October 5, 2017

2

Table of Contents
Introduction ..4

Nagios Monitoring Solutions ..4
Critical Decisions ..4

Nagios Terminology ...9
Service and Host Check Options ..13

Basic Nagios Configuration ...15
Installing From Source ...15
Initial Set Up ...17
Nagios Check Triangle ...19

Administration Tasks ...22
Authentication ...22
Scheduled Downtime ..26
Host Groups ..30
Service Groups ...33

Monitoring Public Ports ...33
check_ping ..35
check_tcp ..35
check_http ...36

Monitor Linux with NRPE ...41
Set Up the Host to be Monitored with NRPE ...38
Set Up the Nagios Server ..42

Monitoring Windows with NSClient++ ...46
Installation of NSClient++ ..46
NSClient++ and NRPE ...48
Internal NSClient ++ Functions ..50
NSClient++ and check_nt ...52
NSCLient++ Password ..57

3

Introduction
Nagios is both a powerful and flexible tool for monitoring devices and applications on those devices. The power of
Nagios is in the ability to monitor many different network devices at one time using various methods to monitor those
devices. The flexibility of Nagios provides an administrator the tools to monitor just about anything that is connected
to a network. In addition, Nagios allows the administrator to monitor both the internals and the application processes
on those devices. Monitoring would not be complete without multiple methods for contacting administrators which
Nagios also provides.

Nagios Monitoring Solutions
Nagios Core is the foundational application that provides the monitoring and alerting options that Nagios is known
for. Nagios Core contains the architecture that enables flexibility in monitoring and in extending the capabilities of
Nagios with other applications. The flexibility of Nagios Core allows you to use it to perform and schedule checks,
perform event handling and alert administrators as needed. The Nagios web interface which uses CGI by default can
be modified to use a MySQL database as the back-end. The front-end can be modified with custom options to
provide the look and feel that an organization needs. Nagios Core by design features and supports many different
addons that can be used with it. Nagios Core is an OpenSource Software licensed under the GNU GPL V2.

Nagios XI takes the Nagios Core and builds upon it to create an enterprise-class monitoring and alerting solution that
is easier to set up and configure. Nagios XI through easy to use network wizards provides infrastructure monitoring of
all of an organizations critical hardware, applications, network devices and network metrics. The dashboard feature
allows you to view the entire infrastructure visually as you monitor all of these services and devices. You also have
the alerting options which communicate to administrators when services and hosts have problems. The trending and
hardware capacity limits help you create proactive decisions about the network and devices on the network. The
graphical interface is easy to customize to fit the organization needs and by monitoring the graphs will help you
predict network, hardware and application problems.

The major differences between these monitoring solutions is that Nagios Core is an OpenSource Software that can be
configured manually to perform some of the functions of Nagios XI, but it must be configured from the command
line and does not provide the easy to use GUI, configuration wizards or advanced reporting capabilities that XI does.
If you are looking for an easy to use and set up interface, Nagios XI is it.

Critical Decisions
These 4 elements represent turning points in how you implement Nagios. Each turning point represents a decision
that has implications in how Nagios is used.

1. Monitor Public Information vs. Private Information

In order to provide instructions that work across multiple Linux distributions, the Nagios Start Up
Guide provides documentation for compiling Nagios and Nagios plugins.

Public ports are ports that are accessible to anyone, like ports for a web server (80), FTP server (21) or mail server
(25). When a service is started on a server that is a public service, everyone has access to the public port unless
firewall rules prevent it.

4

The caveat of monitoring public ports is that they are easy to monitor (little to no configuration required) but may not
provide all of the detail that is desired. The Nagios server firewall is completely blocked to incoming traffic unless it
is related to a connection established by the Nagios server. This means you have greater security for a Nagios server
that is accessible from the Internet. It also means the client being monitored is more secure as special access for the
Nagios server does not have to be added. In summary, monitoring public ports offer greater security but less
information.

In contrast, monitoring internal aspects of a machine requires an agent to be installed on the client. The only way to
monitor internal aspects of a machine is to install an agent, meaning a piece of software that functions as a daemon
allowing connections from the Nagios server so that internal plugins or scripts may be executed and that information
recorded and provided to the Nagios server on connection. Here are several agents that can be used:

SSH – the daemon allows connections from the Nagios server and returns information generated by plugins or scripts.

NSClient++ – this agent is installed on a Windows server or workstation so that commands executed on the
Windows machine can generated information and return that information to the Nagios server when the Nagios server
connects to the Windows machine.

NRPE (Nagios Remote Plugin Executor) – The NRPE agent is installed on the remote machine to allow Nagios to
connect and obtain information generated by plugins that have executed internally or scripts that have executed.

NCPA (Nagios Cross Platform Agent) – The NCPA agent is installed on the remote machine to allow Nagios to
execute plugins and get responses as if it were acting locally.

check_mk – The check_mk agent must be added to the Windows or Linux box in order for check_mk to collect
the information and provide it to the Nagios server.

5

In summary, monitoring internal aspects of a machine provides greater information but requires an agent to be
installed as well as security to be altered to allow the Nagios server to connect.

 2. Active vs. Passive Checks

There are a few things to consider when deciding whether to monitor your infrastructure with active or passive checks.
Note: you can use both if you choose.

Active checks are initiated by the Nagios server. This method is also known as polling. The Nagios server determines
the time and the frequency for the checks. Active checks that use only public ports require no modification. However,
when internal aspects are monitored the server that is monitored must not only have an agent installed to initiate any
internal plugins or scripts on the machine but the firewall will need to be modified to allow Nagios to connect on the
agent ports.

Passive checks require that the server to be monitored not only initiates the script to check internal aspects but also
initiate the connection to the Nagios server. This is the type of connection you would want to use if a security event
occurred on the server that is monitored. Any security events would require immediate notification to minimize the
impact.

6

3. Internet Security Measures

Many administrators do not use a firewall on the Nagios server as it is on an internal network, or VPN, so it is not
considered necessary. However, we recommend that Nagios servers always have a firewall in place, as a
compromised Nagios server can compromise the rest of the network it is monitoring.

If a Nagios server is accessible from the Internet, security should be carefully considered. Several aspects of
security must be implemented:

* limited access to the web interface
* limited access to SSH or any other methods of connecting to the server
* SSL for password authentication
* ModSecurity to protect authentication, SQL injection and limit access

4. Nagios Core vs. XI

7

Nagios Core is the Open Source version of Nagios which can be freely downloaded and implemented in any way the
administrator sees fit. The Nagios Core is extremely flexible and provides you access to create, configure and
implement at will.

One of the biggest advantages of Nagios Core is that by the time you get plugins working you are able to troubleshoot
when problems occur. This advantage cannot be overstated as becoming a “Nagios mechanic” is an extremely
valuable asset to any organization. Nagios Core allows the administrator almost unlimited abilities in creating and
monitoring devices and services on those devices. Core provides the structure to implement all of the aspects of XI
but to do it in a way that fits the organization.

The greatest disadvantage of Nagios Core is developing the necessary skills to monitor the devices and the various
aspects of those devices. It takes a great deal of time and meticulous implementation of scripts and plugins to arrive
at the working Nagios Core monitoring system that many organizations need. This is compounded by the fact that it
is often hard to determine how long it will take to get an implementation up and running before attempting to do so,
meaning staff requirements are underestimated.

The XI interface is the commercial version that provides wizards for setting up the plugins making it much easier to
set up quickly and also implement checks that you may not totally understand how they work.

The greatest advantages of XI are that it gets an organization up and running quickly, and provides many advanced
reporting capabilities that Core does not, such as capacity planning and SLA reports. The wizards work very well and
provide intuitive support in implementing NRPE, SNMP, NSCLient++, etc. However, this is not an automatic set up
as some basic information and understanding are required.

8

In summary, if an organization is short on time and has the resources, XI is a great choice. On the other hand, if an
organization has the time and the right people the results can be more productive and probably save money in the long
run.

Conclusion:
Turning points determine many significant decisions. Give careful thought to how these turning points are selected
and consider the long term because it is easier to implement an installation by planning ahead

Nagios Terminology
plugins
Nagios uses plugins, or compiled executables that can used to check services and hosts on your network. Plugins can
be developed using Perl, shell scripts, etc. Plugins provide communication between the Nagios daemon and the hosts
and service options you want to check. There are many different plugins available. Each plugin must be configured
specifically for the host and service you choose to evaluate. Plugins do not come in the nagios package but are
provided in a separate package called nagios-plugins. You can download from these locations.

Nagios Plugins
Official Nagios Plugins http://nagiosplugins.org/
Nagios Plugin Downloads http://www.nagios.org/download/
NagiosExchange http://exchange.nagios.org/

Currently the plugins provided in the nagios-plugins package provides about 70 plugins. This certainly provides you
with adequate plugins to get started.

If you need to find out more information about a specific plugin you can use this command:

./check_ping -help
check_ping v1.4.15 (nagios-plugins 1.4.15)

9

http://exchange.nagios.org/
http://www.nagios.org/download/
http://nagiosplugins.org/

Copyright (c) 1999 Ethan Galstad <nagios@nagios.org>
Copyright (c) 2000-2007 Nagios Plugin Development Team

<nagiosplug-devel@lists.sourceforge.net>

Use ping to check connection statistics for a remote host.

Usage:
check_ping -H <host_address> -w <wrta>,<wpl>% -c <crta>,<cpl>%
[-p packets] [-t timeout] [-4|-6]

Options:
-h,--help

Print detailed help screen
-V, --version

Print version information
-4, --use-ipv4

Use IPv4 connection
-6, --use-ipv6

Use IPv6 connection
-H, --hostname=HOST

host to ping
-w, --warning=THRESHOLD

warning threshold pair
-c, --critical=THRESHOLD

critical threshold pair
-p, --packets=INTEGER

number of ICMP ECHO packets to send (Default: 5)
-L, --link

show HTML in the plugin output (obsoleted by urlize)
 -t, --timeout=INTEGER

Seconds before connection times out (default: 10)

host
A host is a server, switch, router, printer or any other network device that you want to monitor. Nagios requires an IP
Address for the host or a FQDN (Fully Qualified Domain Name) to determine the exact location of the device. Each
host must also have a unique name that will tie the host name reference to the IP Address of FQDN. The host
information is required for the service definition.

service
Services refer to checks that occur on a device which may monitor internal aspects of the device like CPU usage or
memory and also refer to checks on applications which exist on the device such as MySQL or Postfix.

contact
Contacts are the individual administrators that are notified by Nagios because of a host or service problem using the
contactgroup. The contact information provides a way to communicate to the administrator. Contacts is also a way to
manage which administrators can see hosts and services on the web interface as they must be listed as contacts in
order to view specific information on devices.

contactgroup
These groups are the connection between detected problems and communications with individuals in the group.

Reachability
Nagios has the ability to determine if a host is in a down state or if it is in an unreachable state. The practical
implications of both of these states is the same, stuff does not work. However, the troubleshooting aspect is quite
different. If a host is down, then of course the administrator needs to investigate the host specifically. However, if a
network device is down or so heavily loaded it restricts communication then the network administrator needs to focus

10

mailto:devel@lists.sourceforge.net
mailto:nagios@nagios.org

on the network devices and related issues. So reachability is concerned with the overall network health and how it
impacts your monitored hosts.

Nagios is able to discern the network structure and how it alters these down states and unreachable states by
understanding the path for data packets on the network. In other words, Nagios needs to know how
equipment is connected because that will help determine the situation. This is done by making a reference to the
parent/child relationships of connected network devices.

Nagios needs to be able to start tracing the path of the data packet from the Nagios server (hostname) to the next
device and the next device. So the first step in setting this up is creating an entry for
Nagios in the hosts.cfg file.

define host{
host_name nagios

}

Of course you want to provide the hostname of your Nagios server which you can determine with the command:

hostname

The next step in configuration is to look at the IP Address and hostname of the next network device. If Nagios is
connected to a switch, that switch should be also configured with a host definition. The difference is that you want to
tell Nagios that the parent of that switch device is the hostname nagios.

define host{
host_name ciscoswitch
parents nagios

}

You can only add devices that have the ability to be assigned an IP Address and/or a hostname.

The key in the design is recognizing the network configuration and telling Nagios which is the parent, or network
device, directly above the host you are working with. Once your data packet hits your external interface on your router
you cannot specify routers on the Internet as the path will vary depending upon best route. So if you were tracing the
data packet path from Nagios to a remote device you would need to indicate the IP Address of the external router
connecting the device to the Internet.

Volatile Service
A volatile service is a service that will automatically return itself to an "OK" status when it is checked. Or it is a
service that needs to be checked by an administrator on each occurrence, like a security event.

flapping
A flapping state is when a service or host changes from an OK state to CRITICAL state rapidly. These changing
states will send multitudes of notifications to administrators which can be non-productive. When flapping is detected
Nagios will recognize the changing states and move into a state of flapping which provides additional options for an
administrator which could allow unwanted notifications.

In order to detect this flapping state Nagios saves in memory 21 checks for each host and service. Nagios reviews the
last 20 changes to determine if the host or service is changing states based on a percentage. In this review of states the
more recent checks are provided a greater weight than the older checks as this is probably more important to an
administrator. Nagios also provides two thresholds for a
service and a host so that an administrator can set an
upper and lower threshold which means that when the
service or host goes above the upper threshold Nagios
recognizes this as state flapping which means
notifications will be stopped, an entry in the log is

11

created and a comment is placed in the web interface so
it can be reviewed by administrators. Once the percentage
goes below the lower limit the comment is removed and
the service is returned to a normal state with notifications
enabled. This process takes a period of time or occur.
Here is an example of a service that is flapping. If you
look closely you can see the percentage of state change.

Notifications for this service are being suppressed
because it was detected as having been flapping between
different states (24.4% change >= 20.0% threshold).
When the service state stabilizes and the flapping stops,

notifications will be re-enabled.

To make changes to the settings for flap detection, first
access the nagios.cfg file which provides global settings.
The first setting that can be altered is that an administrator
can turn flapping off by changing the value to “0”. The thresholds may be modified to meet specific requirements for
the organization. Remember these thresholds are percentages so the low end is 5%, or one state change and the
upper end is 20% which equals five state changes.

enable_flap_detection=1

low_service_flap_threshold=5.0
high_service_flap_threshold=20.0
low_host_flap_threshold=5.0
high_host_flap_threshold=20.0

Specific changes could be made with the specific service as well. The “flap_detection_enabled” must be included to
allow the override of the global settings. The two thresholds then may be modified to meet the needs of the service.

define service{
use generic-service
host_name centos
service_description SMTP
check_command check_smtp
flap_detection_enabled 1
low_flap_threshold 10.0
high_flap_threshold 30.0

}

There is another option that is available with flapping. This option allows an administrator to control which states
indicated flapping. The states available are o(OK), w(WARNING), c(CRITICAL) and u(UNKNOWN). States that
are not listed are not taken into account to determine flapping.

flap_detection_options o,w,c,u

12

As you can see in this illustration you can also “Disable flap detection for this host” under the “Host Commands”.
This provides the option to just perform the task as it happens. Here is the verification before you commit the change.

Service and Host Check Options

Public Service Checks
There are a number of protocols that exist which allow the Nagios server to test them externally. For example the
common port 80 is available to be check on any web server.

FTP - port 21
SSH - port 22
Web - port 80
SMTP - port 25
Secure Web - port 443

These public services allow Nagios to not only check to see if the port is open but to verify the correct application is
running on the specific port. This can be done because each of these public services run specific protocols which

13

provide the information needed to monitor them correctly and to differentiate them from other services on the same
port.

Checks Using SSH
Nagios can connect to a client server using SSH and then execute a local plugin to check internal functions of the
server like CPU load, memory, processes, etc. The advantage of using SSH is that checks are secure in the connection
and the transfer of information. The disadvantage for SSH checks are that they take more resources than other check
types.

Nagios Remote Plugin Executor
NRPE, Nagios Remote Plugin Executor, executes plugins internally on the client and then returns that information to
the Nagios server. The Nagios server connects on port 5666 in order to execute the internal check. NRPE is protected
by the xinetd daemon on the client so that an administrator can restrict the connections to the NRPE plugins.

Monitoring with SNMP
SNMP, Simple Network Management Protocol, is used extensively in network devices, server hardware and software.
SNMP is able to monitor just about anything that connects to a network, that is the advantage. The disadvantage is
that it is not easy to work with. The complexity of SNMP is made even worse by the fact that vendors write
proprietory tools to monitor SNMP that are not easily accessed using Nagios. SNMP can be monitored directly using
Nagios plugins or the device itself can monitory SNMP and send information to SNMP traps which can be located on
the Nagios server. The difficulties are further aggrevated when using traps as the SNMP trap information must be
translated into data that Nagios can understand.

Nagios Service Check Acceptor
NSCA, Nagios Service Check Acceptor, employs a daemon on the Nagios server which waits for information
generated by passive checks which execute independently on the client being monitored by Nagios. The advantage of
NCSA is that services are monitored locally independent of the Nagios server and then sent to the Nagios server so
this is a good option when a firewall between the Nagios server and the client prevent other types of communication.
The disadvantage is that passive checks use plugins but often require scripts to execute on the client.

Communication can be encrypted between the client and the Nagios server and a password will be required to
complete communication.

Another use for NSCA is distributed monitoring. Distributed monitoring allows a wide geographical base of network
devices to be monitored by multiple Nagios servers which use NSCA to send service checks and host checks to a
central Nagios server.

14

Basic Nagios Configuration
The manual provides step-by-step instructions for setting up a CentOS /RHEL based server. Note that the file
locations and the names of files may be different depending upon how you install Nagios. This manual is based on
compiling Nagios on a CentOS server.

Installing From Source
Installation from source is a process where the source code that was developed by the programmer is converted into a
binary format that the server can run. Compiling Nagios is not as difficult as it may sound. It may require a few
extra steps in setting up Nagios but there are several advantages over using a RPM repository or a DEB repository.
The biggest advantage of installing from source is that the installation process can be repeated on almost any Linux
distribution. This aspect is even more important when you consider that whether you install from a RPM repository
(CentOS) or from a DEB repository (Ubuntu) the file names and locations for files are different in each case. The
implications for documentation are that you must translate any documentation to the installation method that was
chosen.

Another significant advantage of compiling from source is that you have more options so the configuration may be
altered to meet specific requirements. Of course, any changes to the defaults mean that the documentations and other
dependencies must be evaluated per the changes from the default.

The installation of Nagios must be performed as root. In order for all of the following commands to work, become root
by entering the following command:

su –

Install from source by first moving into the directory that you want to make the installation from. This should be a
directory that you can clean up when you have compiled Nagios. The sources files from this directory can be removed
once the installation is complete. For this reason many users create download directories, use the /opt directory or
the /tmp directory. In this example the /usr/local/src directory is used.

cd /usr/local/src

The source code that is downloaded is in the form of a tarball and compressed so it is in the form of a tar.gz file. The
wget command is used to pull the source code down from the web site.

wget http://sourceforge.net/projects/nagios/files/nagios-3.x/nagios-
3.2.3/nagios-3.2.3.tar.gz/download

wget
http://sourceforge.net/projects/nagiosplug/files/nagiosplug/1.4.15/nagios-plugins-
1.4.15.tar.gz/download

Prerequisites to compile.
When you compile software it will require a compiler like GCC. In order to compile an application it requires the
source code. This source code is what the programmer has developed in an editor. The compiler takes the source
code and converts it into binary code that the server can use. Or to put it another way, the source code is taken and
built into object code which can then be executed from the computer hardware. It is typical that the source code will
have dependencies as well. Dependencies are applications that are required to be installed before the source code will

15

http://sourceforge.net/projects/nagiosplug/files/nagiosplug/1.4.15/nagios
http://sourceforge.net/projects/nagiosplug/files/nagiosplug/1.4.15/nagios
http://sourceforge.net/projects/nagios/files/nagios

work properly. Several of the files installed with yum in this example are dependencies that must be available. Note
that depending on the Linux distribution these dependency applications may be called by different names.

yum install -y httpd php gcc glibc glibc-common gd gd-devel

Add the required users and groups.
useradd nagios
groupadd nagcmd

usermod -a -G nagcmd nagios

The tarballs are compressed so in order to compile these must be expanded into the directories that contain the source
code.

tar zxvf nagios-3.2.3.tar.gz
tar zxvf nagios-plugins-1.4.15.tar.gz

Move into the directory created when the Nagios source was uncompressed and run the configure script using the
group that was created earlier.

cd nagios-3.2.3
./configure -with-command-group=nagcmd

The make command will compile the Nagios source code.

make all

Now make will install the binaries, the init script, the config files, set the permissions on the external command
directory and verify the web configuration files are installed. The semicolons allow you to run all the commands
from one line.

make install; make install-init; make install-config; make install-
commandmode; make install-webconf

Edit the contacts.cfg and and add the email for the primary nagios administrator, nagiosadmin.

vi /usr/local/nagios/etc/objects/contacts.cfg

Create a password for the nagiosadmin which will be needed in order to login to the web interface.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

Nagios Plugins
Move into the directory created when the Nagios plugins source was uncompressed and run the configure script using
the group that was created earlier. Note: If you want to use check_snmp be sure to install net-snmp before you
compile the plugins.

16

Either compile net-snmp (see the SNMP chapter) or install it with yum.
yum install -y net-snmp
cd /usr/local/src
cd nagios-plugins-1.4.15

./configure -with-nagios-user=nagios -with-nagios-group=nagios

Now make will install the binaries.
make
make install

Initial Set Up
The first step is to add a contact email for the nagiosadmin. The user nagiosadmin by default is the only user able to
access the whole web interface. This can be changed but the default user is nagiosadmin.

Change the Contact Information
Edit /usr/local/nagios/etc/objects/contacts.cfg (RPM repository
/etc/nagios/objects/contacts.cfg).

Place your email in the email location.

define contact{

contact_name nagiosadmin ; Short name of user

use generic-contact ; Inherit default values

alias Nagios Admin ; Full name of user

email your_email ; <<***** CHANGE THIS TO YOUR EMAIL

}

Pre-Flight Check
The pre-flight check provides a way to verify all of the configuration files which exist in the
/usr/local/nagios/etc/objects directory. This command reads and verifies the initial set up.

nagios -v /usr/local/nagios/etc/nagios.cfg

Nagios 3.0.6
Copyright (c) 1999-2008 Ethan Galstad (http://www.nagios.org)
Last Modified: 12-01-2008
License: GPL

Reading configuration data...

Running pre-flight check on configuration data...

Checking services...

17

Checked 8 services.
Checking hosts...

Checked 1 hosts.
Checking host groups...

Checked 1 host groups.
Checking service groups...

Checked 0 service groups.
Checking contacts...

Checked 1 contacts.
Checking contact groups...

Checked 1 contact groups.
Checking service escalations...

Checked 0 service escalations.
Checking service dependencies...

Checked 0 service dependencies.
Checking host escalations...

Checked 0 host escalations.
Checking host dependencies...

Checked 0 host dependencies.
Checking commands...

Checked 24 commands.
Checking time periods...

Checked 5 time periods.
Checking for circular paths between hosts...
Checking for circular host and service dependencies...
Checking global event handlers...
Checking obsessive compulsive processor commands...
Checking misc settings...

Total Warnings: 0
Total Errors: 0

Things look okay - No serious problems were detected during the pre-flight check

By default it should run and you should be able to login to the web interface after you create the nagiosadmin user.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin
New password:
Re-type new password:
Adding password for user nagiosadmin

Now login to the web interface with http://ip_address/nagios

Eliminating an HTTP Error
When you set up the Nagios server and either review your log files in /var/log/nagios/nagios.log or review the web
interface you may initially see an error related to the web server. The error is related to the fact that you do not have a
an index.html file that exists. Note: If you do not see the error it is because you have the necessary files so you
can skip this step. Here is what it will look like in the log.

18

WARNING: HTTP/1.1 403 Forbidden-5240 bytes in 0.001 second response time
Sep 26 10:00:18 nagios nagios: SERVICE ALERT: localhost;HTTP;WARNING;HARD;4;HTTP

Here is what it will look like in the web interface.

You can easily eliminate the error by creating an index.html file. Create a simple HTML.

vi /var/www/html/index.html

<HTML>
<BODY>
Nagios Server
</BODY>
</HTML>

chmod 755 /var/www/html/index.html
chown apache:apache /var/www/html/index.html

Nagios Check Triangle
One of the major concepts of creating checks is to remember that all plugins with Nagios will require three elements
to be configured. There must be a host definition, a service definition and a command definition. Think of it as a
triangle each time you want to use a plugin.

19

These three definitions are all located in three separate files, hosts.cfg, services.cfg and commands.cfg. You may need
to create hosts.cfg and services.cfg as they are not created by default. These files must be located in:

/usr/local/nagios/etc/objects

Host Defintion
Nagios needs to know an IP Address of the host you want to check. This is configured in the hosts.cfg file. The
hosts.cfg file does not exist initially so you will need to create it. In this example the host_name is “win2008” and it is
tied to the address “192.168.3.114”. This is the information Nagios must have to know where to point a request and
how to record information for a specific host.

Create the file, hosts.cfg, in /usr/local/nagios/etc/objects

define host{
use windows-server
host_name win2008
alias Windows Server
address 192.168.3.114

}

Service Definition
The second part of the triangle is the service definition. Nagios needs to know what service you want to check, so that
service or plugin must be defined. In this example the host “win2008”, which Nagios knows now is tied to the IP
Address 192.168.3.114, is being checked with the ping plugin. So you can see the host_name determines which host
the plugin acts upon and then the service_description is really the text that shows up in the web interface. The
check_command, defines the parameters of the plugin. Here you can see that “check_ping” is the plugin and it is
followed by two different sections of options divided by “!”. The first section, “60.0,5%”, provides a warning level if
packets are take longer than 60 milliseconds or if there is greater than a 5% loss of packets when the ping command is
performed. The second section is the critical level where a CRITICAL state will b e created if packets take longer
than 100 milliseconds or if there is more than 10% packet loss.

Create the file, services.cfg, in the /usr/local/nagios/etc/objects directory.

define service{
use generic-service
host_name win2008
service_description Ping
check_command check_ping!60.0,5%!100.0,10%

}

Command Definition
The command definitions are located in the commands.cfg file which is created by default in the objects directory.
Many commands are already defined so you do not have to do anything. The check_ping command is one example
that has been defined. The command_name, “check_ping”, is what is part of the service definition. The
command_line specifically defines where the plugin is located with the “$USER1$ macro. This is equal to saying that
the plugin check_ping is located in /usr/local/nagios/libexec (if you compiled). The other 4 options include the host,
using the $HOSTADDRESS$ macro, a warning level (-w) using the $ARG1$ macro, the critical level (-c) using the
$ARG2$ macro and the number of pings to use by default (-p 5).

20

Edit this file, /usr/local/nagios/etc/objects/commands.cfg as it will be created by default.

'check_ping' command definition
define command{

command_name check_ping
command_line $USER1$/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$ -p 5

}

In each of the elements of the Nagios triangle you can see the importance of the term “definition” as each element
must be clearly defined and each element is dependent upon the other definitions.

Important:
You will have created two configuration files which did not exist previously. You must create a path to those files in
the main nagios configuration file found at:

/usr/local/nagios/etc/nagios.cfg

cfg_file=/usr/local/nagios/etc/objects/hosts.cfg
cfg_file=/usr/local/nagios/etc/objects/services.cfg

You will see other paths have been also created. Any time you create a new configuration file this should be entered
in the nagios.cfg file.

Run the pre-flight check to verify all of the configuration files which exist in the /usr/local/nagios/etc/objects
directory. This command reads and verifies the initial set up.

nagios -v /usr/local/nagios/etc/nagios.cfg

Important Paths to Note when you compile Nagios on a CentOS server.

NAGIOS Program Location Configuration File Plugins

Compile /usr/local/nagios/bin/nagios /usr/local/nagios/etc/nagios.cfg /usr/local/nagios/libexec

NRPE Program Location Configuration File

Compile /usr/local/nagios/bin/nrpe /usr/local/nagios/etc/nrpe.cfg /usr/local/nagios/libexec

NSCA Program Location Configuration File

compile /usr/local/nagios/bin/nsca /usr/local/nagios/etc/nsca.cfg

WEB Web Pages cgi Configuration cgi Files

Compile /usr/local/nagios/share /usr/local/nagios/etc/cgi.cfg

Web Server Program Location Web Server Configuration Nagios Web Config

CentOS /usr/sbin/httpd /etc/httpd/conf/httpd.conf /etc/httpd/conf.d/nagios.cfg

htpasswd Database

Compile /usr/local/nagios/etc

21

Administration Tasks

Authentication
Authentication is the process that allows users to access the web interface. Authentication is controlled by the use of a
database using the htpasswd command. The database, called htpasswd.users, is located in the /usr/local/nagios/etc
directory. The name and location of the database is determined by the configuration options found in
/etc/httpd/conf.d/nagios.conf. In this example, from a CentOS install, you can see that several directories require
authentication from this database.

ScriptAlias /nagios/cgi-bin "/usr/local/nagios/sbin"

<Directory "/usr/local/nagios/sbin">
SSLRequireSSL

Options ExecCGI
AllowOverride
None Order
allow,deny Allow
from all

Order deny,allow
Deny from all
Allow from 127.0.0.1

AuthName "Nagios
Access" AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
Require valid-user

</Directory>

Alias /nagios "/usr/local/nagios/share"

<Directory "/usr/local/nagios/share">
SSLRequireSSL

Options None
AllowOverride
None Order
allow,deny Allow
from all

Order deny,allow
Deny from all
Allow from 127.0.0.1

AuthName "Nagios
Access" AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
Require valid-user

</Directory>

22

Access is maintained through the database but the permissions a user has once they authenticate are determined by
contacts, contact groups and cgi permissions determined from the cgi.cfg file. An important point to remember when
setting up permissions is that the contact is only able to see the host or service that they are responsible for. Make sure
contact names match the user created for access to the web interface.

These settings represent the default settings in the /usr/local/nagios/etc/cgi.cfg file for permissions to the web
interface. The user “nagiosadmin” is the default nagios user with access and unlimited permissions to the web
interface. The defaults demonstrate why it is so important to correctly set up the nagiosadmin user as part of the
initial configuration.

use_authentication=1
use_ssl_authentication=0
#default_user_name=guest
authorized_for_system_information=nagiosadmin
authorized_for_configuration_information=nagiosadmin
authorized_for_system_commands=nagiosadmin
authorized_for_all_services=nagiosadmin
authorized_for_all_hosts=nagiosadmin
authorized_for_all_service_commands=nagiosadmin
authorized_for_all_host_commands=nagiosadmin
#authorized_for_read_only=user1,user2

Scenario: Turn Off All Authentication
Turning off all authentication is not recommended under any circumstances. It is only demonstrated here in
order to aid in the understanding of how Nagios authentication works. These changes allow anyone to make
changes to the Nagios interface, hosts and services.

There are two steps required to turn off all security. Edit the cgi.cfg file located in /usr/local/nagios/etc and change the
“use_authentication” to a “0”.

use_authentication=0

The second step required is to access the /etc/httpd/conf.d/nagios.conf file and comment out the lines that require
authentication for the Nagios directories.

ScriptAlias /nagios/cgi-bin "/usr/local/nagios/sbin"

<Directory "/usr/local/nagios/sbin">
SSLRequireSSL

Options ExecCGI
AllowOverride
None Order
allow,deny Allow
from all

23

Order deny,allow
Deny from all
Allow from 127.0.0.1
AuthName "Nagios Access"
AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
Require valid-user
</Directory>

Alias /nagios "/usr/local/nagios/share"

<Directory "/usr/local/nagios/share">
SSLRequireSSL

Options None
AllowOverride
None Order
allow,deny Allow
from all

Order deny,allow
Deny from all
Allow from 127.0.0.1
AuthName "Nagios Access"
AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
Require valid-user
</Directory>

Restart Nagios and the web server.

Scenario: Create a View Only Account
This scenario will create a user that can view all hosts and services but not be allowed to make any changes to those
hosts or services. This is typically the settings you may choose for management to review the status of hosts and
services.

Create the user in the htpasswd.users database.

htpasswd htpasswd.users management New
password:
Re-type new password:

Make modifications to the /usr/local/nagios/etc/cgi.cfg file by adding the user separated by a comma, without spaces.
The user has global access, which means they are not required to be listed as contacts for hosts and services. The user
is also added to the read only list.

authorized_for_all_services=nagiosadmin,management
authorized_for_all_hosts=nagiosadmin,management
authorized_for_read_only=management

Restart Nagios and the web server.

Scenario: Create System Administrator with No Contact Information
In this scenario the settings will allow a user to have full access to all settings on all hosts and services just like the

24

nagiosadmin user. However, this user is not associated with any contact information so will not be notified at any
time. This account is strictly administration only.

htpasswd htpasswd.users john New
password:
Re-type new password:

Edit the cgi.cfg file and add john to each of the lists indicated below.

authorized_for_system_information=nagiosadmin,john
authorized_for_configuration_information=nagiosadm,john
authorized_for_system_commands=nagiosadmin,john
authorized_for_all_services=nagiosadmin,john
authorized_for_all_hosts=nagiosadmin,john
authorized_for_all_service_commands=nagiosadmin,john
authorized_for_all_host_commands=nagiosadmin,john

Restart Nagios and the web server.

Scenario: Create an Administrator with Limited Access
This user will only be allowed to access the hosts and services that they are associated with via contact information.
This may be the type of settings used when an organization has divided responsibilities for routers, Windows servers
and Linux servers for example.

htpasswd htpasswd.users sue New
password:
Re-type new password:

Create a new contact entry in contacts.cfg and specify the contact_name, alias and email contact information for the
user.

define contact{
contact_name sue
use generic-contact
alias Router Admin
email sue@example.com
}

Add the user to a group or create a new group in the contacts.cfg file. This example shows a user added to a new
contact group called router-admins. By creating a new group it enables an administrator to assign that group to a
series of devices, like routers.

define contactgroup{
contactgroup_name router-admins
alias Router Administrators
members sue
}

25

mailto:sue@example.com

At this point you will need to edit the hosts and services and add the “contact_groups router-admins” which will
override the default settings in the template. This will enable only those users in this contact group access to these
hosts and services unless they have global access from the cgi.cfg file.

define host{
use generic-switch
host_name cisco
alias cisco router
address 192.168.5.220
contact_groups router-admins

}
define service{

use generic-service
host_name cisco
service_description PING
check_command check_ping!200.0,20%!600.0,60%
normal_check_interval 5
retry_check_interval 1
contact_groups router-admins

}

Restart Nagios and the web server.

Scheduled Downtime
If you are going to work on a server or device and need to schedule downtime so Nagios does not notify
administrators that can be performed at the web interface. When you select the host or service that will be down you
have an option to schedule downtime. When downtime is scheduled Nagios will place a comment in the web interface
in order to communicate the fact to all administrators who access the web interface.

There are two types of downtime. Fixed downtime allows for and exact start and end time when the host or service
will be unavailable. Flexible downtime allows for a start time but an open ended startup time as the exact time cannot
be determined based on the nature of the situation.

Triggered downtime is when the downtime of a parent will trigger downtime for all of it's children. In other words,
the downtime for a switch, will impact all of the devices connected to it.

Scheduling Downtime for a Host
In order to schedule downtime for a host, select host details from the web interface. On the right hand side you will
notice the “yellow clocks” permit scheduling for host or services. Select the host option.

26

Once you have selected the host, “Command Options” appears and provides a place to explain why the downtime to
other administrators in the comment area, which is a good idea in most situations. If you select a “Fixed” time you
will enter the start and end of the downtime. If this machine that provided network connection with other devices you
may want to notify downstream devices with a “triggered by” option that is created by this device going down. Or you
may choose to do nothing.

27

On the Nagios interface on the left menu, if you select “Downtime” you will see a list of all scheduled downtimes for
hosts and services. Remember it may take a few minutes to allow the devices to show up.

Here is how the host looks with downtime (this is the exfoliation frontend), note the “yellow clock” which is an
indicator of scheduled downtime.

28

If you select the clock you will see the details on the host list it as being in a scheduled downtime.

At this point it will be listed in the “Downtime” menu. Note you can cancel by deleting the downtime.

Notifications and Downtime
Notifications for downtime should stop in the downtime period. If the notifications do not stop verify that you do not
have the “d” option set for your contacts. The “d” option will send notifications on downtime.

Host Groups
Often you will want to create a group of devices that have similar monitoring needs. The hostgroup allows you to then

29

create service checks that monitor all of the devices in the hostgroup. Specifically what this means is that the
services defined for the group will be available for all hosts in the group without making individual configurations.
Nagios will also list the hosts together in the web interface if they are in the same hostgroup.

Define Each Host
In order to set up a hostgroup, each server must be defined as a host. In this example, 3 Ubuntu servers are defined.

define host{
use
host_name
alias

linux-server
ub
Ubuntu Server

address 192.168.5.180
}
define host{

use linux-server
host_name ub1
alias Ubuntu Server
address 192.168.5.181

}
define host{

use linux-server
host_name ub3
alias Ubuntu Server
address 192.168.5.183

}

Define Host Groups
Create hostgroups.cfg in the objects directory and create an entry in nagios.cfg to the location of hostgroups.cfg.

cfg_file=/usr/local/nagios/etc/objects/hostgroup.cfg

Define the hostgroup, in this example the hostgroup ubuntu_servers is defined with the three members that were
defined in hosts.cfg file.

define hostgroup {
hostgroup_name ubuntu_servers
alias Ubuntu Servers
members ub,ub1,ub3

}

Define Services for the Group
The advantage of the hostgroup is that you can create one service definition and add that to the whole group of
servers. This is exactly the same as a regular service definition except you use hostgroup_name instead of host.

define service{
use generic-service
hostgroup_name ubuntu_servers

30

service_description Ping
check_command check_ping!60.0,5%!100.0,10%

}
define service{

use generic-service
hostgroup_name ubuntu_servers
service_description SSH Server
check_command check_tcp!22

}
define service{

use generic-service
hostgroup_name ubuntu_servers
service_description Web Server
check_command check_tcp!80

}

Now if you go to the web interface and select “Hostgroups” you will have a group of servers that are all related with
the same service checks.

If you want to add individual service checks for one of the servers in the hostgroup that would be done as a regular
service definition using the host.

31

Service Groups
Nagios combines devices that are checking the same services into group in order to make the set up faster and more
efficient. This allows an administrator to group machines based on services. Each of these services must be
configured as service checks for each host. Once that is complete the services may be grouped in the
servicegroups.cfg. The other major advantage is that the administrator may manage all those in the service group with
servicegroup commands in the web interface.

You will need to create a file called servicegroups.cfg and put an entry in nagios.cfg to indicate where it is. Note the
entries are in pairs (first host, then service) “host,service, host2,service2”.

define servicegroup{
servicegroup_name web
alias Web Servers
members ub, HTTP ,ub1, HTTP ,ub3, HTTP

}

Define each host with a normal service check.

define service{
use generic-service
host_name ub
service_description HTTP
check_command check_http

}
define service{

use generic-service
host_name ub1
service_description HTTP
check_command check_http

}
define service{

use generic-service
host_name ub3
service_description HTTP
check_command check_http

}

32

This now allows the administrator to group these services and view them as a group when “ServiceGroups” is selected

in the web interface.

Monitoring Public Ports
Each of the plugins that monitors a specific service.

Each plugin will evaluate the situation and return a status value to Nagios. There are four status values that
Nagios interprets.

0 OK the stats is as expected
1 WARNING a warning limit has been reached
2 CRITICAL a critical limit has been reached
3 UNKNOWN the status is unknown, misconfiguration

In order for Nagios to provide these four levels of status settings, warning and critical limits must be established. An
important aspect of setting these limits is that each network will have different equipment and varying needs so
these settings should reflect the individual network. Another setting

Typical Options
-h, --help Print detailed help screen
-V, --version Print version information
-H --hostname=ADDRESS Host name, IP Address, or unix socket (must be an absolute path)
-w --warning=DOUBLE Response time to result in warning status (seconds)
-c --critical=DOUBLE Response time to result in critical status (seconds)
-t --timeout=INTEGER Seconds before connection times out (default: 10)
-v --verbose Show details for command-line debugging (Nagios may truncate output)
-4 --use-ipv4 Use IPv4 connection
-6 --use-ipv6 Use Ipv6 connection

check_tcp, check_udp
-p --port=INTEGER Port number (default: none)

33

-E --escape Can use \n, \r, \t or \ in send or quit string. Must come before send
or quit option Default: nothing added to send, \r\n added to end of quit
-s --send=STRING String to send to the server
-e --expect=STRING String to expect in server response (may be repeated)
-A --all All expect strings need to occur in server response. Default is any
-q --quit=STRING String to send server to initiate a clean close of the connection
-r --refuse=ok|warn|crit Accept TCP refusals with states ok, warn, crit (default: crit)
-M --mismatch=ok|warn|crit Accept expected string mismatches with states ok, warn, crit (default: warn)
-j --jail Hide output from TCP socket
-m --maxbytes=INTEGER Close connection once more than this number of bytes are received
-d --delay=INTEGER Seconds to wait between sending string and polling for response
-D --certificate=INTEGER Minimum number of days a certificate has to be valid.
-S --ssl Use SSL for the connection.

34

check_ping
Ping is a standard method of checking to see if a network device is up.

Uniq Options
-p - - packets=INTEGER number of ICMP ECHO packets to send (Default: 5)

Here is a service definition with a warning level of 60 milliseconds or 5% packet loss and a critical level of 100
milliseconds or 10% loss. This demonstrates that the settings need to be specific to the device or the network as
networks vary. The default is 5 packets in the ping.

define service{
use generic-service
host_name centos
service_description Ping
check_command check_ping!60.0,5%!100.0,10%

}

The command definition can include the settings for warning and critical level if you want to make them standard for
all uses of ping on a network.

define command{
command_name check-host-alive
command_line $USER1$/check_ping -H $HOSTADDRESS$ -w 3000.0,80%

-c 5000.0,100% -p 5
}

check_tcp
This plugin will provide the flexibility you need if you need to monitor a port just to verify that the port is available.
Here is an example of portmap service checks.

define service{
use generic-service
host_name centos
service_description Portmap
check_command check_tcp! 111

}

define
command{ command_name

check_tcp
command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p $ARG1$ $ARG2$
}

Note that a common problem with check_tcp is that often the “-p” is added to the service definition. This will create
the error “Port must be a positive integer” if the command definition already has the “-p”.

35

If you have any problems run the command from the command line to experiment.

./check_tcp -H 192.168.5.1 -p 111
TCP OK - 0.000 second response time on port 111|
time=0.000386s;;;0.000000;10.000000

check_http
A common public port that often is check is port 80, http. There are a significant number of options with this plugin
to get out of it as much as possible.

-I --IP-address=ADDRESS IP address or name (use numeric address if possible to bypass DNS
 lookup).

-p --port=INTEGER Port number (default: 80)
-S --ssl Connect via SSL. Port defaults to 443
--sni Enable SSL/TLS hostname extension support (SNI)
-C --certificate=INTEGER Minimum number of days a certificate has to be valid. Port defaults to 443
-e, --expect=STRING Comma-delimited list of strings, at least one of them is expected in

 the first (status) line of the server response (default:HTTP/1.) If specified
skips all other status line logic (ex: 3xx, 4xx, 5xx processing)
-s --string=STRING String to expect in the content
-u --url=PATH URL to GET or POST (default: /)
-P --post=STRING URL encoded http POST data
-j --method=STRING (HEAD, OPTIONS, TRACE, PUT, DELETE) Set HTTP method.
-N --no-body Don't wait for document body: stop reading after headers.
-M --max-age=SECONDS Warn if document is more than SECONDS old. the number can also be of

the form "10m" for minutes, "10h" for hours, or "10d" for days.
-T --content-type=STRING specify Content-Type header media type when POSTing
-l --linespan Allow regex to span newlines (must precede -r or -R)
-r --regex, --ereg=STRING Search page for regex STRING
-R --eregi=STRING Search page for case-insensitive regex STRING
--invert-regex Return CRITICAL if found, OK if not
-a --authorization=AUTH_PAIR Username:password on sites with basic authentication
-b --proxy-authorization=AUTH_PAIR Username:password on proxy-servers with basic authentication
-A --useragent=STRING String to be sent in http header as "User Agent"
-k --header=STRING Any other tags to be sent in http header. Use multiple times for

additional headers
-L --link Wrap output in HTML link (obsoleted by urlize)
-f --onredirect=<ok|warning|critical|follow|sticky|stickyport>
-m, --pagesize=INTEGER<:INTEGER> Minimum page size required (bytes) : Maximum page size required (bytes)

This is the standard way to use the check_http. It checks to verify communication is available on port 80 of a web
server. This is in fact, a better check on the server than the check_ping which can only determine if the server is up.
This simple check provides some peace of mind and a place to start.

define service{
use generic-service
host_name centos

36

service_description HTTP
check_command check_http

}

These two checks are related to the SSL options with the web server. Note that the checks change to port 443 if you
use the --ssl option, they are testing to see if the web server can serve secure pages and if the web server certificate is
valid for the next 21 days. The first check will test for a response within a limited time frame, 5 seconds for a warning
or more than 10 seconds for a critical state.

define service{
use generic-service
host_name centos
service_description Secure HTTP
check_command check_http! -w 5-c 10 --ssl

}

This check is focused on the certificate. In this example, if the certificate is good for more than 21 days an “OK” is
returned. A warning state is triggered if the certificate has less than 21 days before it expires. A critical state is
triggered when the certificate has expired.

define service{
use generic-service
host_name centos
service_description Certificate
check_command check_http! -C 21

}

Both of the service checks above will return the following output in the Nagios web interface.
OK - Certificate will expire on 05/25/2012 23:59.

This usage of check_http allows you to check to see if a directory requiring authorization with username and password
is working correctly. Note that the check_http has been redefined to check_http_auth so that additional arguments can
be used. The service definition includes the IP Address of the server, the directory that requires authentication
(-u/sales) and the username and password required to access the directory. Each is separated by a “!”. Note the
command definition included.

define service{
use generic-service
host_name centos
service_description Sales Authorization
check_command check_http_auth!192.168.5.1 -u/sales!tom!

user_password
}

define command{
command_name check_http_auth
command_line $USER1$/check_http -H $ARG1$ -a $ARG2$:$ARG3$

37

}

If the user login is not correct warning will be issued with the “401 Authorization Required”. This enables you to
verify password changes and integrity. However, leaving a plain text password in the Nagios config files is not the
best idea.

 Monitor Linux with NRPE
The Nagios Remote Plugin Executor or NRPE allows you to execute programs for monitoring purposes on the remote
server. One advantage of NRPE is that it does not require a login to perform the tests on the remote server.

NRPE allows you to monitor internal aspects of a Linux server from the Nagios server. When you monitor public
ports like HTTP you can determine if the web server is running by using these service checks, but you are not able to
monitor other aspects of the server which you may need information on, which is why you will want to use NRPE.

Set Up the Host to be Monitored with NRPE
The first thing to do with the host to be monitored by Nagios is to install the required applications.

NRPE From Source
These instructions pertain to the installation of the daemon and the plugins which are both required for the client to be
monitored. This is different than setting up the Nagios server.

cd /usr/local/src

wget http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe - 2.12.tar.gz/download
tar zxvf nrpe-2.12.tar.gz
cd nrpe-2.12

You will need to install support for ssl, xinetd and compiling tools.
yum install -y mod_ssl openssl-devel xinetd gcc make

./configure --with-ssl=/usr/bin/openssl --with-ssl-lib=/usr/lib

*** Configuration summary for nrpe 2.12 03-10-2008 ***:

General Options:

NRPE port: 5666
NRPE user: nagios
NRPE group: nagios
Nagios user: nagios
Nagios group:
nagios

make
make install
make install-plugin
make install-daemon

38

http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download
http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download

make install-daemon-config
make install-xinetd

Install the Daemon xinetd
The xinetd superdaemon has replaced inetd on most Linux distributions today. xinetd has become more popular
because of security restrictions that can be placed on those who access the daemons managed by xinetd. xinetd also
provides better protection from denial of service attacks, better log management, and more flexibility. Both inetd and
xinetd only work with daemons that provide connections over a network.

How to Protect the NRPE Daemon
Server daemons must be protected to be effective. There is no perfect or complete option, but there are definite ways
to minimize the risk.

1. Limit Connections to Daemons
Connections to daemons can be limited by using several powerful tools. Iptables firewall is probably the most
flexible and powerful tool than an administrator has access to. However, it is at the same time the most
complex. Tcp_wrappers is a tool that is easy to use and works with most daemons to limit access to daemons
to specific subnets or IP Addresses.

2. Limit the Number of Connections
Your network and hardware can only handle a limited number of connections safely. When connections push
your resources to the limit you will often see vulnerabilities appear that would not normally exist. When
resources begin to fail some options and security programs cannot function to their full extent.

You will need to install xinetd and make sure you have a file in /etc/xinetd.d called nrpe on the client and it looks like
this:

default: off
description: NRPE (Nagios Remote Plugin Executor)
service nrpe
{

flags = REUSE
type = UNLISTED
port = 5666
socket_type = stream
wait = no
user = nagios
group = nagios
server = /usr/sbin/nrpe
server_args = -c /usr/local/nagios/etc/nrpe.cfg --inetd
log_on_failure += USERID
disable = no
only_from = 127.0.0.1 192.168.5.50

}

These are the two most important lines. By default all daemons monitored by xinetd are disabled so the default line
says “disable = yes”. The “only_from” line allows you to determine which machines can monitor this server using
NRPE, this is where you will enter the IP Address for the Nagios server as well as the localhost.

disable = no
only_from = 127.0.0.1 192.168.5.50

39

Edit /etc/services and add this line:

nrpe 5666/tcp # Nagios Remote Monitoring

Restart xinetd and view the log at /var/log/daemon.log

service xinetd restart

tail /var/log/daemon.log

Look for errors to correct.

Edit the /usr/local/nagios/etc/nrpe.cfg .
Change your allowed_hosts address to reflect the nagios monitoring server. You should also allow the localhost so
that you can do testing if necessary.

allowed_hosts=127.0.0.1 192.168.5.180

The basic plugins that are running for you initially are these listed below.

command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10
command[check_load]=/usr/local/nagios/libexec/check_load -w 15,10,5 -c 30,25,20
command[check_hda1]=/usr/local/nagios/libexec/check_disk -w 20 -c 10 -p /dev/hda1
command[check_zombie_procs]=/usr/local/nagios/libexec/check_procs -w 5 -c 10 -s Z
command[check_total_procs]=/usr/local/nagios/libexec/check_procs -w 150 -c 200

Change ownership on the /usr/local/nagios/etc/nrpe.cfg

chown nagios /usr/local/nagios/etc/nrpe.cfg*

Firewall
You will need to verify that the firewall will allow your Nagios server to access the Linux server you are testing on
port 5666.

If the Linux server to be monitored is CentOS it probably has the lokkit interface to manage the firewall. At the
command line type:

lokkit

The firewall interface will open so you can manage the ports that are open on the Linux machine. Use the tab to go to
the “Customize” option.

40

The ports you want to enter that are not in the default options can be added by using the port number followed by a
colon and whether it is tcp or udp. In this example 5666:tcp has been added to enable the Nagios server access on this
port.

Save your changes.

tcp_wrappers
Now set up your tcp_wrappers.

Edit the /etc/hosts.allow file first and make sure that you maintain your SSH connection to manage the server and then
add a line for NRPE for your Nagios server to have access.

hosts.allow This file describes the names of the hosts which are
allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#
SSHD: 192.168.5.51

41

NRPE: 192.168.5.51

Now edit /etc/hosts.deny. Use the one line to deny ALL hosts and ALL services. This will then only allow what is
in /etc/hosts.allow.

The portmap line is redundant, but it is left to remind you that
the new secure portmap uses hosts.deny and hosts.allow. In particular
you should know that NFS uses portmap!
ALL: ALL

This completes the basic configuration of the host that you will monitor.

Set Up the Nagios Server

One you have the remote host set up you will need to set up the Nagios monitoring server. First install the nrpe plugin.

NRPE From Source
These instructions pertain to the installation of the plugin only which is different that for the client to be monitored.
NRPE plugins only need to be installed on the Nagios server.

cd /usr/local/src
wget http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe 2 .12/nrpe -

2.12.tar.gz/download
tar zxvf nrpe-2.12.tar.gz
cd nrpe-2.12

You will need to install support for ssl, xinetd and compiling tools.
yum install -y mod_ssl openssl-devel xinetd gcc make

./configure --with-ssl=/usr/bin/openssl --with-ssl-lib=/usr/lib

*** Configuration summary for nrpe 2.12 03-10-2008 ***:

General Options:

NRPE port: 5666
NRPE user: nagios
NRPE group: nagios
Nagios user: nagios
Nagios group:
nagios

make
make install
make install-plugin

42

http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download
http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download
http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download
http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download

Do a Manual Check of the Remote Host
In order to verify that the remote host is functioning correctly do a manual check. Remember to allow port 5666/tcp
on the remote host. Use the full path to check if the Nagios server can contact the remote host.

/usr/local/nagios/libexec/./check_nrpe -H 192.168.5.49 -c check_users
USERS OK - 2 users currently logged in | users=2;5;10;0

If you see output that is similar it is functioning correctly.

Create the Host Files
In order to monitor remote Linux boxes you will need to set up your template called “linux-box” or use a template that
is already available. Then you will need to create a host entry for each remote box you will monitor.

define host{
name linux-box
use generic-host
check_period 24x7
check_interval 5
retry_interval 1
max_check_attempts 10
check_command check-host-alive
notification_period 24x7
notification_interval 30
contact_groups admins
register 0
}

define host{
use linux-box
host_name dg
alias Base
address 192.168.5.178
}

Configure Services
Each service you want to monitor on the remote host must be entered individually. Here is an example of monitoring
CPU load on the host “dg”. Note: The “service_description” should be entered carefully as you may decide to use
other addons for Nagios that are case sensitive to the names of the services. The check_nrpe command is used to
access the remote server and then execute the Nagios plugin that is on the remote server and retrieve the information.

define service{
use generic-service
host_name dg
service_description CPU Load
check_command check_nrpe!check_load
}

Once this is complete you must restart your nagios server with:

43

service nagios restart

If you get errors correct them.

Now you can check your connection by running the following command and using the IP Address of the remote box
you want to monitor. You should get the return “NRPE” and version number if all is working.

/usr/local/nagios/libexec/./check_nrpe -H 192.168.5.178
NRPE v2.12

If you get this return then you have communication between the Nagios monitoring server and the remote host.

Create the NRPE Command Definitions
Before you can execute commands for NRPE on the Nagios server you will need to edit the commands.cfg and define
the commands for NRPE. Here are two examples that you can use.

NRPE Commands

define command{
command_name check_nrpe
command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

define command{
command_name check_nrpe2
command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$ -a $ARG2$
}

Configure the Checks
On the Nagios server you can monitor all of the defaults by placing the information in your services file.

define service{
use generic-service
host_name class
service_description CPU Load
check_command check_nrpe!check_load
}

define service{
use generic-service
host_name class
service_description User Load
check_command check_nrpe!check_users
}

define service{
use generic-service
host_name class
service_description Check hda1
check_command check_nrpe!check_hda1

44

}
define service{

use generic-service
host_name class
service_description Check Zombies
check_command check_nrpe!check_zombie_procs
}

define service{
use generic-service
host_name class
service_description Check Processes
check_command check_nrpe!check_total_procs
}

Once you have added these to your server restart Nagios and you should see that they are working.

45

Monitoring Windows with NSClient++
The Windows client NSClient++ can be used to both monitor a Windows machine with NSClient++ using the
check_nt command or using NRPE. Because the configuration for both aspects involves the NSClient++ they are
viewed together. The first step in setting up NRPE for Windows is to download a client for the Windows machine.

Download the NSCLient++ from http://sourceforge.net/projects/nscplus

This will provide a .zip file which you can unzip and it will provide the NSClient++-Win32-x.x.x folder.

Installation of NSClient++
Login as the Administrator to the server.
Create a directory under the C:\ drive and download NSClient++ into that drive. Unzip the file and enter the directory
that was created.

Once you install you will have to make a note of the location of the install directory path.
Here is the contents of the directory.

On the Windows machine place the path for the .exe file in the run command and install the program.

C:\NSClient++-Win32-0.3.8\NSClient++.exe /install

You will see a security warning but continue the install.

Now start the program, note your path may be different.

C:\NSClient++-Win32-0.3.8\NSClient++.exe /start

46

file:///C:/Users/bheden/SVN/docs/NSClient
http://sourceforge.net/projects/nscplus

In order to stop the program use this command.

C:\NSClient++-Win32-0.3.8\NSClient++.exe /stop

You can test with:

C:\NSClient++-Win32-0.3.8\NSClient++.exe /test

If you make any changes to the configuration, stop the service and restart it.

Edit the NSC.ini file that is in the NSClient directory. Note that the file is divided by keywords placed in brackets.
First go to the [modules] section and edit the checks that you want to use. Uncomment the lines that you see below.
The FileLogger.dll will log the activities of the NSClient++. CheckDisk.dll will check for file size and hard disk use.
The CheckSystem.dll will check for memory, uptime, service stats and processes. You will also need to uncomment
the NSClientListener.dll and the NRPEListener.dll in order to communicate with Nagios.

In order to use some of the options available with NSClient++ you need to allow to additional features. There are
characters that need to be used with commands |`&<>'”\[]{} that you will want allow, “nasty_meta_chars”. The
“allow_arguments” will allow NRPE parameters to be passed along. Now there some security issues with enabling
this option so you need to consider that factor.

Go to the global section, [Settings], and be sure to limit the access to the Windows server that you are going to
monitor. Under the Allowed Hosts section enter the local host and any other connections that you want to enable.
These addresses will be separated by a comma.

allowed_hosts=127.0.0.1/32,192.168.5.50

In the Windows firewall open two ports, 5666 for NRPE and 12489 for NSClient++. Both are TCP ports. You can see
in the example how it should look when you review the firewall.

Limit access to these ports to the Nagios server only.

47

NSClient++ and NRPE
The NSC.ini file contains several settings for using NRPE. Look for two sections that relate to NRPE and the
modules section.

[modules]
FileLogger.dll
CheckSystem.dll
CheckDisk.dll
NRPEListener.dll
CheckEventLog.dll

[NRPE]
allow_arguments=1
allow_nasty_meta_chars=1
allowed_hosts=127.0.0.1/32,192.168.5.50
Port=5666

This of course assumes you will open port 5666 on the Windows machine. If you
can, limit the access to this port only to the Nagios server for security. If you
see this output in your web interface make sure that port 5666 is open and that
you have started the client.

FileLogger.dll
FileLogger provides an internal log of NSClient++ but does not actually provide
any checks.

CheckSystem.dll
This dll allows for checks of the CPU,memory, uptime, services, and process
states.

CheckDisk.dll
CheckDisk allows checks for file size, and hard drive usage.

NRPEListener.dll
The NRPEListener is the key to providing functionality to NRPE.

SysTray.ddl
The SysTray installs an icon to use for access to NSClient++. You will need to
install NSClient first with:

nsclient++ /install

Then you will need to run this command:

nsclient++ -noboot SysTray install

Finally, open the services manager and edit the NSClientpp service to allow it to
interact with the desktop.

48

Note: The SysTray feature only works with XP and older machines!

CheckEventLog.dll

The NRPE Handlers represent the actual commands that will be used.

[NRPE Client Handlers]
command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10
check_disk1=/usr/local/nagios/libexec/check_disk -w 5 -c 10
check_disk_c=inject CheckFileSize ShowAll MaxWarn=1024M MaxCrit=4096M

Once you have the remote host set up you will need to set up the Nagios monitoring server. First install the nrpe
plugin.

NRPE From Source on Nagios Server
These instructions pertain to the installation of the plugin only which is different that for the client to be monitored.
NRPE plugins only need to be installed on the Nagios server.

cd /usr/local/src

49

wget http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe - 2.12.tar.gz/download
tar zxvf nrpe-2.12.tar.gz
cd nrpe-2.12

You will need to install support for ssl, xinetd and compiling tools.
yum install -y mod_ssl openssl-devel xinetd gcc make

./configure --with-ssl=/usr/bin/openssl --with-ssl-lib=/usr/lib

*** Configuration summary for nrpe 2.12 03-10-2008 ***:

General Options:

NRPE port: 5666
NRPE user: nagios
NRPE group: nagios
Nagios user: nagios
Nagios group:
nagios

make
make install
make install-plugin

Once it is up an running check your connection.

/usr/local/nagios/libexec/./check_nrpe -H 192.168.5.14
I (0.3.5.1 2008-09-24) seem to be doing fine...

If you see errors you will need to correct them, use the log for locating the errors.

Internal NSClient ++ Functions
There are a number of internal functions that can be called with the inject command and NRPE and are usually
combined with check_nt. The check_nt plugin makes it easy to use these functions. However, if you want to fine tune
the options that are available you may want to use NRPE and the inject command. Following is a list of modules with
their functions.

CheckDisk – CheckFileSize, CheckDriveSize
CheckSystem – CheckCPU, CheckUpTime, ChekServiceState,
CheckProcState, CheckMem, CheckCounter
CheckeventLog – CheckEventLog
CheckHelpers – CheckAlwaysOk, CheckAlwaysCRITICAL,
CheckAlways,WARNING, CheckMultiple

You can use aliases with external commands to do checks. The advantage of setting up the aliases is not so much the

50

http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download
http://sourceforge.net/projects/nagios/files/nrpe-2.x/nrpe-2.12/nrpe-2.12.tar.gz/download

alias by itself but it will allow you to use the CheckMultiple function if you want to. Check to see if you can get it to
work from the command line on the Nagios server first. If that works you can proceed.

./check_nrpe -H 192.168.5.14 -c CheckCPU -a warn=80 crit=90 time=20m
time=10s time=4
OK CPU Load ok.|'20m'=0%;80;90; '10s'=0%;80;90; '4'=0%;80;90;

You will need to define Service checks on Nagios server as usual. Note NRPE is used to make the connection and
then run the alias that you will set up.

define service{
use generic-service
host_name winserver
service_description CPU Load
check_command check_nrpe!alias_cpu

}
define service{

use generic-service
host_name winserver
service_description Check Services
check_command check_nrpe!alias_service

}
define service{

use generic-service
host_name winserver
service_description Free Space
check_command check_nrpe!alias_disk

}

Once the Windows server you will need to edit the “External Alias” section and create or uncomment the aliases that
are there with the levels.

[External Alias]
alias_cpu=checkCPU warn=80 crit=90 time=5m time=1m time=30s
alias_disk=CheckDriveSize MinWarn=10% MinCrit=5% CheckAll FilterType=FIXED
alias_service=checkServiceState CheckAll

You also need to verify that the “modules” section has the uncommented “CheckExternalScripts.dll ” as you see
below so checks can be made.

[modules]
CheckExternalScripts.dll

Restart your NSCLient++ on the Windows server and nagios on the Nagios server.

If you wanted to perform multiple checks at one time, thus saving network and server resources, you could use the
CheckMultiple function. The CheckMultiple function will become an alias for any number of commands that
you will want to run. The format should be like this:

51

alias=alias_name command= command= command=

Remove the aliases that you may have had previously and place them all on the CheckMultiple alias.

[External Alias]
alias_multiple=CheckMultiple command=checkCPU warn=80 crit=90 time=5m time=1m
time=30s command=CheckDriveSize MinWarn=10% MinCrit=5% CheckAll FilterType=FIXED
command=checkServiceState CheckAll

You will need to set up a service on the Nagios server to reflect your settings in the nsc.ini on the windows server.

define service{
use generic-service
host_name winserver
service_description Multiple
check_command check_nrpe!alias_multiple

}

Here you can see the second line down the Multiple check is running. It checks the number of checks you have
entered and then the “bad news rises to the top”. In other words as you can see any issues with one check can trigger
the “CRITICAL” state. If you look closely the text specifically says the other checks are OK.

NSClient++ and check_nt
The check_nt plugin is a standard plugin that is available and ready to go. It can be extended with The key to getting
this to work is to uncomment NSClientListener.dll and to open the port 12489/TCP.

[modules]
FileLogger.dll
CheckSystem.dll
CheckDisk.dll
NSClientListener.dll
CheckEventLog.dll

[NSClient]
allowed_hosts=192.168.4.3

Security Tip: Use the “allows_hosts” option to protect your Windows server so only the Nagios server can access
this daemon.

If allowed hosts is used in this section it will take precedence over the “Settings” where there is also an option to enter
“allowed_hosts”.

52

check_net plugin
The check_nt plugin is the standard plugin that is used with NSClient++ and is a plugin included in the nagios-plugins
install.

-H host address

-v command that is executed

-p port, this port is often changed to 12489

-w integer warning integer

-c integer critical integer

-l use a parameter

-d option, the -d SHOWFAIL option shows only checks that fail, the -d SHOWALL will show all

-s password sent to Windows server

-t timeout, default is 10 seconds

There are a number of easy to use service definitions. Here are some basic ones to get started. Each of these services
using check_nt show that the check_nt plugin is separated from the service with “!”. This is also seen in the default
check_net commands definition in commands.cfg. Note in this example the port is determined with “-p 12489”.

'check_nt' command definition
define command{

command_name check_nt
command_line $USER1$/check_nt -H $HOSTADDRESS$ -p 12489 -v $ARG1$ $ARG2$
}

The first check to try, which is actually the easiest to get started is the the test for the clientversion. Try this one first
and once it is running then you will know that communication is working correctly.

define service{
use generic-service
host_name winserver
service_description NSClient++ Version
check_command check_nt!CLIENTVERSION
}

Monitor the uptime of the Windows server with UPTIME.

define service{
use generic-service
host_name winserver
service_description Uptime
check_command check_nt!UPTIME
}

53

Create a service for monitoring CPU load. When you define this service the “-l” is a parameter that has three settings.
The first setting “5” is the average load over 5 minutes. Of course, you can adjust that for your needs. The second and
third settings are the warning level 80% load and the critical level 90% load. Again, these must be averages over the
time period of 5 minutes.

define service{
use generic-service
host_name winserver
service_description CPU Load
check_command check_nt!CPULOAD!-l 5,80,90
}

You can modify this check so that you can evaluate averages on various time intervals. These time intervals will need
to be added in three entries. In the example below you can see “5,80,90” and “15,75,87”. The first entry are averages
for 5 minutes and the second entry is the averages fro 15 minutes. You can also see the averages are lower in the
second entry. This is typically how you would want to evaluate CPU Load as spikes over a short period of time are not
a concern but high averages over a longer period are certainly problematic.

define service{
use generic-service
host_name winserver
service_description CPU2 Load
check_command check_nt!CPULOAD!-l 5,80,90,15,75,87
}

This check is to evaluate memory use on the server with a warning when it reaches 80% and a critical level at 90%.

define service{
use generic-service
host_name winserver
service_description Memory
Usage
check_command check_nt!MEMUSE!-w 80 -c 90
}

The C:/ drive is typically the installation drive for a Windows machine. Of course this will be one drive or partition
that you will want to monitor. The example show next has the parameter(-l) for first the drive “c” and then the
warning level “-w 80” and the critical level “-c 90”. Adjust the parameters to your needs.

define service{
use generic-service
host_name winserver
service_description C:\ Drive
Space
check_command check_nt!USEDDISKSPACE!-l c -w 80 -c 90
}

If you wanted to monitor another partition, in this example drive “e”, then just substitute the drive letter you want to
monitor.

define service{
use generic-service

54

host_name winserver
service_description E:\ Drive
Space
check_command check_nt!USEDDISKSPACE!-l e -w 80 -c 90
}

You can use check_nt to monitor any service on the Windows machine. There are two options you can use to
specifically monitor a service. The “-d” provides the option to either use SHOWFAIL option shows only checks that
fail or the SHOWALL that will show all services. Now if you are only monitoring one service with the check you
will want to use “SHOWALL”. If you were trying to monitor all services with one check then you would probably
want “SHOWFAIL”.

define service{
use generic-service
host_name winserver
service_description W3SVC
check_command check_nt!SERVICESTATE!-d SHOWALL -l W3SVC
}

Here is an example of monitoring explore.exe, vmplayer.exe and notepad.exe. Simply by changing the exe on the
parameter you can choose specific applications.

define service{
use generic-service
host_name winserver
service_description Explorer
check_command check_nt!PROCSTATE!-d SHOWALL -l Explorer.exe
}

define service{
use generic-service
host_name winserver
service_description VMware
check_command check_nt!PROCSTATE!-d SHOWALL -l vmplayer.exe
}

define service{
use generic-service
host_name winserver
service_description Notepad
check_command check_nt!PROCSTATE!-d SHOWALL -l notepad.exe
}

You also have the option to include all of the mission critical applications in
one check. Here you want to make sure to list each application separated by a
command as you can see. If you use the option “SHOWALL” it will list both those
that are running as well as those that are not. The bad news rises to the top
so if one is not running the check will be in the critical state. If you
just want to know which ones are not running then use “SHOWFAIL”.

define service{
use generic-service
host_name win2008,exchange
service_description Applications

55

check_command check_nt!PROCSTATE!-d SHOWALL -l
explorer.exe,notepad.exe,nsclient++.exe,vmwareplayer.exe

}

Here you can see that the Critical state is listed because only one application out of the list is not running. Bad news
rises up to the top.

event_log Monitoring
The event log on a Windows server can be a critical aspect of locating information on the server. Here is an example
of the service check using NRPE and the alias_event_log.

define service{
use generic-service
host_name win2008
service_description NRPE Event Log New
check_command check_nrpe!alias_event_log
}

Note that if one element has a problem it will create a critical state as you see here.

Here is the actual output that you can find in the logs of the Nagios server.

Nov 4 09:13:43 nag2 nagios: SERVICE NOTIFICATION: nagiosadmin;win2008;NRPE
Event Log New;CRITICAL;notify-service-by-email;warning: COM+: (2), error:
WinMgmt: (1), error: WinMgmt: (1), warning: storflt:
The Virtual Storage Filter Driver is disabled through the registry. It is
inactive for all disk drives. (2), warning:
W32Time: NtpClient was unable to set a manual peer to use as a time source
because of DNS resolution error on time.windows.com,0x9. NtpClient will try again
in 15 minutes and double the reattempt interval thereafter. The error was: No
such host is known. (0x80072AF9) (11), warning: PlugPlayManager: The service
ShellHWDetection may not have unregistered for device event notifications before
it was stopped. (1), warning: USER32: The process
C:\Windows\system32\winlogon.exe (winexamplecom) has initiated the restart of
computer WIN-H366O37KOW0 on behalf of user NT AUTHORITY\SYSTEM for the...

56

NSCLient++ Password
The password feature allows you to create a password that will be used by Nagios to log into the Windows server.
This password has several options. First you can enter the password in plain text in the nsc.ini and in the command
definition for check_nt as you see below.

[Settings]
password=your_password

When you use the password option in nsc.ini, you will need to modify the check_nt command so the password can be
transferred. Edit the commands.cfg

command_line check_nt -H $HOSTADDRESS$ -p 12489 -s your_password -v $ARG1$
$ARG2$

The use of the obfuscated_password option seems to be broken. In order to create the password go to the command
line on the Windows machine and execute this command:

NSClient++ /encrypt

You will be asked to enter you password and it will obfuscate not encrypt the password. The shorter the word the
shorter the password that is created. This method is both unreliable and undocumented. You are better off using plain
text than this method as at least you know what is going on.

57

	Table of Contents
	Introduction
	Nagios Monitoring Solutions
	Critical Decisions
	In order to provide instructions that work across multiple Linux distributions, the Nagios Start Up Guide provides documentation for compiling Nagios and Nagios plugins.
	Conclusion:
	Nagios Plugins
	host
	service
	contact
	contactgroup
	Reachability
	Volatile Service
	flapping

	Service and Host Check Options
	Public Service Checks
	Checks Using SSH
	Nagios Remote Plugin Executor
	Monitoring with SNMP
	Nagios Service Check Acceptor

	Installing From Source
	Prerequisites to compile.
	Nagios Plugins

	Initial Set Up
	Change the Contact Information
	Pre-Flight Check
	Eliminating an HTTP Error

	Nagios Check Triangle
	Service Definition
	Command Definition
	Important:
	Important Paths to Note when you compile Nagios on a CentOS server.

	Authentication
	Scenario: Turn Off All Authentication
	Scenario: Create a View Only Account
	Scenario: Create System Administrator with No Contact Information
	Scenario: Create an Administrator with Limited Access

	Scheduled Downtime
	Scheduling Downtime for a Host
	Notifications and Downtime

	Host Groups
	Define Each Host
	Define Host Groups
	Define Services for the Group

	Service Groups
	Typical Options
	check_tcp, check_udp

	check_ping
	check_tcp
	check_http
	Set Up the Host to be Monitored with NRPE
	NRPE From Source
	Install the Daemon xinetd
	How to Protect the NRPE Daemon
	1. Limit Connections to Daemons
	2. Limit the Number of Connections
	Firewall
	tcp_wrappers

	Set Up the Nagios Server
	NRPE From Source
	Do a Manual Check of the Remote Host
	Create the Host Files
	Configure Services
	Create the NRPE Command Definitions
	Configure the Checks

	Installation of NSClient++
	NSClient++ and NRPE
	Note: The SysTray feature only works with XP and older machines!
	NRPE From Source on Nagios Server

	Internal NSClient ++ Functions
	NSClient++ and check_nt
	[NSClient]
	check_net plugin
	event_log Monitoring

	NSCLient++ Password
	[Settings]

